Programming - course 5
07/01/2014
Martin SZINTE

Using the Psychtoolbox (PART 2/2)

Plan
1. Installing de la Psychtoolbox (PTB)
2. Whatis the PTB?
3. The Screen function
- Testing the PTB
- Screen
- Crash of the PTB
4. Help and demos of the PTB
- Help section
- PsychDemos
5. Essential functions of the PTB
- FillRect / FrameRect
- DrawlLine/ FillPoly
- MakeTexture / DrawTexture
- FillOval / FrameOval / DrawDots
- DrawText
6. Take care of time and creating moving objects
- Flip duration
- Creating moving object
7. Use of the keyboard and mouse
- Using the keyboard
- Using the mouse

FILLOVAL/FRAMEOVAL/DRAWDOTS

These three sub-functions draw circle and oval on a full-screen window.
To use them follow such schemas:

Screen('FillOval', wPtr [,color] [,rect];
Screen('FrameOval', wPtr [,color] [,rect] [,penWidth] [,penHeight]);
Screen('DrawDots', wPtr, xy [,size] [,color] [,center] [,dot_typel);

FILLOVAL draws filled circles or ovals of a pre-defined size and color.

FRAMEOVAL draws famed circles or ovals with a pre-defined size, color and frame width.
DRAWDOTS draws very nice anti-aliased filled circles or ovals, however contrary to the two
other drawing circle functions this function is very fast and allows the computation of
thousand of them within the time of a screen refresh.

Question 7: How could we draw circles by specifying its center coordinates and
radius instead of its RECT?

Most of the sub-functions of Screen use the LTBR coordinates system, however to draw a
circle it is more intuitive to specify its center coordinates and its radius. To change the
coordinate system of the PTB we will simply create our own circle drawing function
“my_circle.m” that will automatically translate the center and radius into LTBR coordinates.

Look for “my_circle.m” in the material folder, add the function to your path and execute it
through the command window.

function my circle(scr,color,x,y,r,colorWidth,penWidth)
% my circle(scr,color,x,y,r,[colorWidth], [penWidth])

O
% Goal of the function :

% Draw a colored (color) circle or oval in position (x,y) with radius

% (r) and with a colored contour (colorWidth) and width (penwidth).

B e e
% Input(s)

% scr = window Pointer ex : w

% color = color of the circle in RBG or RGBA ex :[0 0 0]

% x = position x of the center ex : x = 550

% y = position y of the center ex : y = 330

% r = radius for X (in pixel) ex : r = 25

% colorWidth = color of the contour of the circle ex :[255 0 0]

% penWidth = size of the contour of the circle ex : 10

B e e
% Output(s):

% none

B e
% Function created by Martin SZINTE (martin.szinte@gmail.com)

% Last edit : 06 / 01 / 2014

% Project : Programming course

% Version : -

% if there isn't colorWidth argument the function will draw a filled circle
if nargin < 6
% DrawDots makes nicer dots however it can only draw small dots (< 30pix)
if r>30
Screen('Filloval',scr,color,[(x-r) (y-r) (x+r) (y+r)l);
else
Screen('DrawDots', scr,[x,y],r*2,color,[],2)
end

% if there is colorWidth argument the function will draw a framed circle
else

Screen('FrameOval',scr,colorWidth, [(x-r) (y-r) (x+r) (y+r)],penWidth);
end

end

We can now test such function in a full-screen window of the PTB.

Look for “testCircle.m” in the material folder, add the function to your path and execute it
through the command window.

=> testCircle(1)

function testCircle(type)

% Goal of the function
% Simple function that illustrates the FillOval and DrawDots functions.

% Input(s)

% type : switch of the display

% if type == : filled circle

% if type == 2 : frame circle

% else : both kind

B e e
% Output(s):

% (none)

B e
% Function created by Martin SZINTE (martin.szinte@gmail.com)

% Last update : 06 / 12 / 2014

% Project : Programming courses

% Version : -

B e
type;

scrAll = Screen('Screens');

scrNum = max(scrAll);

HideCursor;

[scr,scrRect] = Screen('OpenWindow',6scrNum);

Screen('BlendFunction', scr, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

priorityLevel = MaxPriority(scr);Priority(priorityLevel);

colBG = [255 255 255]; % background color

colCircle = [0 0 0]; % circles color

colwidth = [0 200 0]; ¢ cicle frame color

penWidth = 10; % frame width

x1l = 200; yl = 200; ¢ first cicle center coordinates
x2 = 400; y2 = 300; % second cicle center coordinates
rl = 15; ¢ first cicle radius

r2 = 40; % second cicle radius

for timeFlip = 1:200

Screen('FillRect',scr,colBG);

if type ==
% draws filled circle
my_circle(scr,colCircle,x1,yl,rl);
elseif type ==
% draws framed circle
my_circle(scr,colCircle,x2,y2,r2,colWidth,penWidth);
else
% draws both framed and filled circle
my_circle(scr,colCircle,x1,yl,rl);
my_circle(scr,colCircle,x2,y2,r2,colWidth,penWidth);
end

Screen(scr, 'Flip');
end

ShowCursor;
Screen('CloseAll’');

DRAWTEXT

You will sooner or later need to display text for your experiment, either for your stimuli or
simply to indicate to the subject the experiment instructions.

DRAWTEXT draws text on a full-screen window, however such Screen sub-function needs
several others in order to draw formatted text with pre-defined size, font, color, position...

Look for “testText.m” in the material folder, add the function to your path and execute it
through the command window.

=> testText;

function testText

% Goal of the function :
% Simple function that illustrates the DrawText sub-function.

Function created by Martin SZINTE (martin.szinte@gmail.com)
Last update : 06 / 01 / 2014

Project : Programming course

Version : -

o0 o0 0P o

scrAll = Screen('Screens');
scrNum = max(scrAll);

HideCursor;

[scr,scrRect] = Screen('OpenWindow',6scrNum);

Screen('BlendFunction', scr, GL_SRC_ALPHA, GL_ONE_MINUS SRC_ALPHA);
priorityLevel = MaxPriority(scr);Priority(priorityLevel);

CcolBG = [255 255 255];

textCol = [0 0 0]; % text color

my font = 'Helvetica'; % text font

text_size = 30; % text font size

[scr_midX, scr midY] = RectCenter(scrRect); % screen center coordinates

% text to display

text_linel = 'Two things are infinite: the universe and human stupidity.';
text_line2 = 'And I''m not sure about the universe.';

text_line3 = '';

text_lined4 = ' Albert Einstein';

% create a cell with all text strings
text_all = {text_linel;text_line2;text_ line3;text_lined};

defines text font
defines text font size

Screen ('TextFont', scr, my_font);
Screen('TextSize',scr, text_size);

00 oo

lines = size(text_all,l); % number of lines of the text to
draw

bound = Screen('TextBounds',scr,text all{l,:}); % determines left and right limit
of the first line

spacel. = ((text_size)*1.50); defines space between lines

00 o

first line = scr_midY - ((round(lines/2))*spaceL);
line to draw

defines position of the first

for timeFlip = 1:1000

Screen('FillRect', scr, colBG);
addi = 0;

% loop of text drawing
for t_lines = 1l:lines

xText scr_midX-bound(3)/2;
yText first_ line+addi*spaceL;
Screen('DrawText',scr,text_all{t lines, :},xText,yText,textCol);
addi = addi+1;
end

Screen('Flip',scr);
end

ShowCursor;
Screen('CloseAll');

end

The code above might look complex for such a simple outcome of formatted text. Drawing
text in the PTB could indeed be summarized in 4 main points:

1. Define screen text font: Screen ('TextFont')

2. Define screen text size: Screen('TextSize")

3. Define text position: Screen('TextBounds')
4. Draw text on secondary screen: Screen('DrawText')

Question 8: What is the role of the variable “addi” contained in the text loop of
testText.m?

This variable allows to count the number of lines already displayed and to then determine
the y position of the following text line.

6. Control stimuli duration and creating moving objects

We just seen how displaying different kind of visual stimuli on a full-screen window using
the PTB, however we generally selected randomly the duration during which each of these
stimuli were displayed.

In order to now control stimuli duration we will first need to understand the way visual
stimuli are physically displayed on a monitor.

FLIP DURATION

Since the beginning of these programming courses we used a main display loop made of a
“for” looping for a random time a stimuli. Most of time however experiment involve
relatively precise stimuli durations.

To specify the duration of a stimulus, we will have to determine the number of times that a
code should be looped. In other term, we should determine how many time the secondary
buffer screen should be flipped on the main monitor to get a specified duration, knowing
the refresh rate of the monitor. All monitors got a specified refresh rate that corresponds
to the number of time it could changes what it displayed during one second. For most of
the flat modern screen, the refresh rate is of 60 Hz, meaning that they could change what
is displayed 60 times per second. The consequence of such constraint is that the minimum
duration of a stimulus on such monitors is of 1/60™ of a second, that is about 17 msec.
Therefore only durations that are multiple of 17 msec can be displayed (e.g. you can’t have
a 120 msec duration stimuli but at best a 117 msec or 133 msec, corresponding
respectively to 7 or 9 flips).

Once you understand such physical constraint, you can use one of the two principal
methods to control your stimuli durations:

1. A“for” loop counting screen flips (also called frame control)
2. A“while” loop using a clock (also called vbl control)

To illustrate these two procedures we will study the testTime.m function that in function of
the input argument either use the first (1) or second (2) method.

Look for “testTime.m"” in the material folder, add the function to your path and execute it
through the command window.
=> testTime(1)

function testTime(type)

% Goal of the function
% Simple function that illustrates the control of timing with the PTB
% using two types of programming versions.

B e e
% Input(s)

% type : type of control of timing

% if type = 1 : frame control

% if type = 2 : vbl control

G e
% Output(s)

% (none)

B e
% Function created by Martin SZINTE (martin.szinte@gmail.com)

% Last update : 06 / 01 / 2014

% Project : Programming course

% Version : -

B e
type;

scrAll = Screen('Screens');

scrNum = max(scrAll);

HideCursor;

[scr,scrRect] = Screen('OpenWindow',6scrNum);

Screen('BlendFunction', scr, GL_SRC_ALPHA, GL_ONE_MINUS SRC_ALPHA);
priorityLevel = MaxPriority(scr);Priority(priorityLevel);

% sub-function determining the frame duration
frame duration = Screen('GetFlipInterval', scr);

colBG = [255 255 255];

colRect = [0 0 0];

rectRect = [200, 200, 300, 3007;
rectRect2 [200, 400, 700, 5007;
rectWidth = 10;

tl_sec = 3; % duration of the first stinulus in seconds
t2_sec = 6; % duration of the second stimulus in seconds
numFrameTl = tl_sec/(frame_duration); % number of frames/flips of the first stimulus
numFrameT2 = t2_sec/(frame_duration); % number of frames/flips of the second
stimulus

% frame control of stimuli duration
if type ==
% Tl: first time
t0 = GetSecs;
of duration
for timeFlipTl = l:numFrameTl
Screen('FillRect',scr,colBG);
Screen('FillRect',scr,colRect,rectRect);
tl = Screen(scr, 'Flip');
end
fprintf(l, '\n\tThe first stimulus duration: %1.3f sec', (tl-t0));

00

Get current machine time to verify accuracy

fprintf (1, '\n\tError with desired duration: %1.3f msec',abs(tl_sec-(tl-t0))*1000);

% T2
for timeFlipT2 = l:numFrameT2
Screen('FillRect',scr,colBG);
Screen('FrameRect',scr,colRect,rectRect2,rectWidth);
t2 = Screen(scr, 'Flip');
end
fprintf(l, '\n\tThe second stimulus duration: %1.3f sec', (t2-tl));
fprintf(1, '\n\tError with desired duration: %1.3f msec\n',abs(t2_sec-(t2-
t1))*1000);

o

¢$ vbl control of stimuli duration
elseif type ==

t0 = GetSecs;
tl = 0;
while t1 < (tl_sec - frame duration)
Screen('FillRect',scr,colBG);
Screen('FillRect',scr,colRect,rectRect);
vbll = Screen(scr, 'Flip');
tl = vbl1l-tO0;
end
fprintf(l, '\n\tThe first stimulus duration: %1.3f sec',(vbll-t0));
fprintf (1, '\n\tError with desired duration: %1.3f msec',abs(tl_sec-(vbll-
t0))*1000);

t2 = 0;
while t2 < (t2_sec- frame_duration)
Screen('FillRect',scr,colBG);
Screen('FrameRect',scr,colRect,rectRect2,rectWidth);
vbl2 = Screen(scr, 'Flip');
t2 = vbl2 - vbll;
end
fprintf (1, '\n\tThe second stimulus duration: %1.3f sec',(vbl2-vbll));
fprintf (1, '\n\tError with desired duration: %1.3f msec\n', abs(t2_sec-(vbl2-
vbl1l))*1000);

end

ShowCursor;
Screen('CloseAll');

end

Question 9: What is the best procedure to control stimuli duration?

For both procedures you should experience more or less big errors between the desired
durations and the actual durations of the stimuli on the monitor.

This basically means that no procedure is perfect, however the accuracy is highly
correlated with the monitor quality. When both procedures are equally inaccurate on flat
monitors, frame control gives very accuracy timing on CRT monitors.

CREATING MOTION

To program a moving stimulus, we should first determine its speed, that is the distance it
makes for a given duration.

As we now know how to control stimulus display duration, we will only need to process
the distance to make for a specified duration. To illustrate such point, we will study the
rotation of a circle and a bar in testClock.m.

Look for “testClock.m” and clock.jpeg in the material folder, add the function to your path
and execute it through the command window.

=> testClock (60,2);

function testClock(t,numRep)

% Goal of the function
% Display image a clock with a second hand turning in x seconde.

% Input(s)
% t : time to make a entire revolution in seconds
% numRep : number of revolutions

B e
% Output(s):

% (none)

B e e
% Function created by Martin SZINTE (martin.szinte@gmail.com)

% Last update : 06 / 01 / 2014

% Project : Programming courses

% Version : -

B e

t;numRep;

scrAll = Screen('Screens');

scrNum = max(scrAll);

[scr,scrRect] = Screen('OpenWindow',6scrNum);

Screen('BlendFunction', scr, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
[scrCtrX, scrCtrY] = RectCenter(scrRect);

priorityLevel = MaxPriority(scr);Priority(priorityLevel);

frame duration = Screen('GetFlipInterval', scr); % get frame duration
HideCursor;

% Colors

white = [255 255 255];
colBG = white;

black = [0 0 0];

% Clock picture
pict = imread('clock.jpg');
t_handle = Screen('MakeTexture',scr,pict);

% Clock hand settings

width line = 5; % width of the clock hand
length line = 320; % lenght of the clock hand
col line = [0,0,200];

distCircle = 130;

radCircle = 22;

matLine = [ones(length line/2,width line);... % determines matrix of the clock hand
zeros(length _line/2,width_line)];

matLine(length line/2-distCircle-radCircle+l:length line/2-distCircle+radCircle-1,:) =
0;

% determines each color and transparency matrix

matLineCol(:,:,1) = matLine.*col line(1l);

matLineCol(:,:,2) = matLine.*col line(2);

matLineCol(:,:,3) = matLine.*col line(3);

matLineCol(:,:,4) = matLine.*255;

hand_h = Screen('MakeTexture',scr,matLineCol); ¢ determines texture handle of

the clock hand

nFrameRot = round(t/frame_duration); % number of frame per revolution
angle = 0:360/nFrameRot:360; % rotation angle per frame

for trep = l:numRep
for timeFlip = l:nFrameRot

timeF = 0:nFrameRot-1;
xCircle = scrCtrX + distCircle * cos((2*pi/nFrameRot)*timeF(timeFlip)-pi/2);
yCircle scrCtrY + distCircle * (-1) * -sin((2*pi/nFrameRot)*timeF (timeFlip)-

pi/2);

Screen('FillRect',scr,colBG);
Screen('DrawTexture',scr,t_handle);

Screen('DrawTexture',scr,hand h,[],[],angle(timeFlip));
my circle(scr,[],xCircle,yCircle,radCircle,col_line,width_line)

my circle(scr,col_line,scrCtrX,scrCtrY,radCircle/2)
Screen('Flip',scr);

end
end

ShowCursor;
Screen('CloseAll');

end

testTime() is a revision of the different notions we have seen throughout these last two
courses. It involves the use Screen sub-function such as MakeTexture and DrawTexture to
display the clock picture and a matrix of the clock hand (using transparency). It also calls
previous functions such as my_circle.m to draw circle of different size, color and types.
Finally it involves the processing of rotational motion (i.e. defining duration and distance)
as well as a very useful way of coding symmetrical stimuli (using trigonometry).

Question 10: What are the roles of the Matlab built-in functions “zeros” and “ones”
used in testClock.m?

These built-in functions allow the creation of matrices composed either of zeros or ones.
You can define the size of such matrices using these function input arguments (lines,
column...).

In testClock.m these functions are used to determine the shape of the clock hand.

Remark:

testClock.m is a complex function illustrating different possibilities of the PTB, however the
rationale behind moving objects is very simple. Moving objects are nothing else than
objects for which coordinates change across the different flips of a monitor.

7. Use of the keyboard and mouse

In most of your experiments you will need a way to interact with your subject.

For such interaction you may use different complex devices such as a joystick, remotes,
eye-trackers, or reaction time boxes, but most of the time you will simply use generic
devices that are the keyboard and mouse.

To use such devices the PTB has several simple functions that we will discover in the
following section.

USING THE KEYBOARD
It exists several built-in Matlab and PTB toolbox functions to collect data via a keyboard.

All these functions have some positive and negative aspects.
Choose carefully functions adapted to your needs using the following table:

Full- Which '
Functions | screen | Timing button V.Valt for Short description
PTB? was input?
pressed?
Pause () No No No Ves Wait'a pre-defined amount
of time or a button press.
Wait a return and
Input(No No ves Yes transmit it values
Check that a letter
CharAvail() Yes No No No keyboard button was
pressed
GetChar() Yes Yes (un- Yes Yes Check for a text button
precise) press and return its value.
Check that a button (any) is
KbCheck() Yes Yes Yes No pressed and return its value
(precise) as well as the moment it
was pressed.
KbWait() Yes Yes No Yes Wait for any button
(precise) to be pressed.

Therefore, when we will need to collect information on the subject or to temporarily stop a
program in Matlab (not during a full-screen PTB), we will prefer PAUSE and INPUT.

PAUSE

for counter = 1:30
fprintf(1,\tThe counter has a value of: %2.0f\n',counter);
pause;

end

Question 11: What happens if we replace “pause” by “pause(1)”?

The input argument of the PAUSE function specifies the time during which we will break a
code. This break will for example allow us to briefly see the results of a graph before
printing the following one.

INPUT

This function waits for the input of an operator (the subject) and for the press of the return
button. The entered input could either be a chain of character or a number.

Look for “magic.m” in the material folder, add this script to your path and execute it
through the command window.

=> magic;

home;

val = input('Choose a number between 1 and 9: ")
fprintf('\nMultiply it by 9');pause

fprintf('\nThis will give you: %i',val*9);pause

fprintf('\n\nNow subtract 5');pause
fprintf('\nThis will give: %i',val*9-5);pause

fprintf('\n\nIf you get a number with 2 digits, add them to each other until you
obtain a single digit');pause

fprintf('\n\nKnowing that 1 = A, 2 =8B, 3 =¢C, 4 =D, ...")
fprintf('\nTake the letter corresponding to the result of your calculation')

fprintf('\nand think of a country name starting by such letter.');pause

fprintf('\n\nTake the last letter of the country name and think of a fruit name
starting by such letter. \n\n');pause

res = input('Were you thinking to a KIWI ? (Y/N) "y 's');
if strcmp(res,'Y")

fprintf('The country you thought of was the Danemark, wasn''t it ?\n')
end

This example shows the different input arguments of the INPUT Matlab function.

The values entered by the operator are returned as output arguments of the INPUT
function. You can then use such output to create interactivity between your codes and the
operator.

GETCHAR / CHARAVAIL / KBCHECK

The functions PAUSE and INPUT can’t be used during a full-screen window of the PTB.
We will then use the PTB functions GETCHAR, CHARAVAIL and KBCHECK.
To use them follow such schemas:

[ch, when] = GetChar([getExtendedData], [getRawCode])
[avail, numChars] = CharAvail
[keylsDown, secs, keyCode, deltaSecs] = KbCheck([deviceNumber])

To illustrate these PTB functions we will study in testButton.m the use of keyboard button
to modify text displayed on a full-screen window.

This function use both CHARAVAIL and GETCHAR in order to collect letter keyboard button
and also KBCHECK to register keyboard button that doesn’t return text when pressed.

Look for “testButton.m” in the material folder, add the function to your path and execute it
through the command window.

=> testButton;

function testButton

% Goal of the function
% Function illustrating the use of KbCheck, GetChar and CharAvail

% Input(s)
% (none)

% Output(s):
% (none)

Function created by Martin SZINTE (martin.szinte@gmail.com)
Last update : 07 / 01 / 2014

Project : Programming course

Version : -

o0 o0 0P o

clear all;
home;

% Keyboard settings

FlushEvents('KeyDown');

KbName ('UnifyKeyNames');
my_key.space = KbName('Space');
my_key.escape = KbName('escape');
press_quit_button = 0;
press_space = 0;

clears any previous button press

gives similar values to each key for any 0S
defines the space button number

defines the escape button number
pre-defines quit button value

pre-defines space button value

00 0@ o0 0P o o@

% Screen settintgs

scrAll = Screen('Screens');

scrNum = max(scrAll);

HideCursor;

[scr.main,scrRect] = Screen('OpenWindow',scrNum);

Screen('BlendFunction', scr.main, GL_SRC_ALPHA, GL_ONE_MINUS_ SRC_ALPHA);
priorityLevel = MaxPriority(scr.main);Priority(priorityLevel);
[scr.x_mid, scr.y mid] = RectCenter(scrRect);

% Text settings

colBG = [255 255 255];

textCol = [0 0 0];

my_font = 'Calibri';

text_size = 20;

text_linel = 'First Name : ';

text_line2 = 'Last Name : ';

text line3 = 'Gender (male/female) :';

text_line4d = 'Age : ';

text_line5 = '';

text_line6 = '>> Press space for next line and escape to quit<<';
text_all = {text_linel;text_line2;text line3;text_line4d;text line5;text _line6};
lines = size(text_all,l);

spacel. = ((text_size)*1.50);

first line = scr.y _mid - ((round(lines/2))*spacel);

Screen('TextSize', scr.main, text_size);
Screen ('TextFont', scr.main, my font);

str_all = [];
t_ini = GetSecs;
ListenChar(2); % stop printing text button

while ~press_quit button
Screen('FillRect', scr.main, colBG);

addi = 0;
for t_lines = 1l:lines
xTxt = 200;
yTxt = first linetaddi*spacelL;

Screen('DrawText',scr.main,text all{t lines,:},xTxt,yTxt,textCol);
addi = addi+1;
end

% loop of text button press
if CharAvail

str = GetChar;

str_all = [str_all,str];
end

text checking loop

%
% gets the latest character pressed

% text modification

if press_space == 0
text_linel = sprintf('First Name : %s',str_all);
text_all =

{text_linel;text line2;text_line3;text line4;text line5;text line6};
elseif press_space ==
text_line2 = sprintf('Last Name : %s',str_all);
text_all =
{text_linel;text line2;text_line3;text line4;text line5;text line6};
elseif press_space ==
text line3 = sprintf('Gender (male/female) : %s',str_all);
text_all =
{text_linel;text line2;text_line3;text line4;text line5;text line6};
elseif press_space ==
text_lined4 = sprintf('Age : %s',str_all);

text_all =
{text_linel;text line2;text line3;text line4;text line5;text line6};
end
[keyIsDown, secs, keyCode] = KbCheck; % checks all button press

% loop of action button press
if keyIsDown
if (keyCode(my_ key.space))
press_space = press_space + 1;
str_all = [];
while KbCheck;end
elseif (keyCode(my_ key.escape))
press_quit_button = 1;

t_end = secs; % gets time of the button press
while KbCheck;end
end
end
Screen('Flip',scr.main);
end
ShowCursor;
Screen('CloseAll’');
ListenChar(1l); % starts to print text keyboard button

% display full-screen window duration
fprintf (1, '\nYou took %3.0f sec to fill the form\n',t end-t_ini);

end

Advice:

The sub-function ListenChar() allow you to avoid modifications in your Matlab code when
an operator use button press during a full-screen window. Indeed when you launch a full-
screen window via the PTB, the text cursor might stay inside your codes. In such case any
button press of the opeartor will modify your code. You can avoid such situation by
putting ListenChar(2) at the beginning of your codes and ListenChar(1) at the very end.

This very useful function however could lead to problems if your code crashes before
executing the ListenChar(2) placed at its very end. In such case you will not be able to write
any new code in your files or in the command window until you press CTRL+C.

USING THE MOUSE

SETMOUSE/GETMOUSE are two PTB functions allowing you to use the mouse in a full-
screen window. To use them follow such schemas:

SetMouse(x,y,[windowPtrOrScreenNumber])
[x,y,buttons,focus] = GetMouse([windowPtrOrScreenNumber])

To illustrate such functions we will study testMouse.m where the mouse coordinates are
used to modify the coordinates of a stimulus.

Look for “testMouse.m” in the material folder, add this function to your path and execute it
through the command window.

=> testMouse;

function testMouse

oe
o
[
7]
o
=
[e]
c
7]
[0

Goal of the function
Simple script illustrating the use of the mouse in the PTB.

o0 o0 0P o

o0 o

00

o0 oo

Function created by Martin SZINTE (martin.szinte@gmail.com)
Last update : 07 / 01 / 2014

Project : Programming courses

Version : -

ListenChar(2);

scrAll = Screen('Screens');

scrNum = max(scrAll);

o0 o0 o oP 0P

00

% Screen settings

HideCursor;
[scr.main,scr.rectV] = Screen('OpenWindow',scrNum);
[scr.x_mid, scr.y mid] = RectCenter(scr.rectV);

priorityLevel = MaxPriority(scr.main);Priority(priorityLevel);

% Stimulus settings
colBG = [255 255 255];
sqr_sizeX = 100;
sqr_sizeY = 100;
sqr_ctrX scr.x_mid;
sqr_ctrY scr.y_mid;
colSqr = [0 0 0];

% mouse settings
SetMouse(scr.x_mid,scr.y mid) % puts the mouse in screen center
press_left mouse = 0; % defines mouse left button value

while ~press_left mouse
Screen('FillRect',scr.main,colBG);

[xMouseNew, yMouseNew, buttonMouse] = GetMouse();

% get new mouse coordinates

diffMouseX = (xMouseNew - sqr_ctrX); % determines x
difference between initial position and current one
diffMouseY = (yMouseNew - sqr_ctrY); % determines y

difference between initial position and current one

sgr_ctrX = sqr_ctrX + diffMouseX; % determines new x

mouse coordinate
sqr_ctrY = sqr_ctrY + diffMouseY; %
mouse coordinate

the

end

rectRect = [sqr_ctrX - sqr_

square

sqr_ctrY - sqr_
sqr_ctrX + sqr_
sqr_ctrY + sqr_

Screen('FillRect',scr.main,

Screen(scr.main, 'Flip');

°

% mouse button loop check

if sum(buttonMouse)~= 0
if buttonMouse(l) == 1
press_left mouse =
end
end

ListenChar(1l);
ShowCursor;
Screen('CloseAll');

end

sizeX/2,... %
sizeY/2,...

sizeX/2,...

sizeY/2];

colsqgr,rectRect);

1;

determines new y

Rect coordinates of

